题目描述
Given an integer N, find how many pairs (A, B) are there such that: gcd(A, B) = A xor B where
1 ≤ B ≤ A ≤ N. Here gcd(A, B) means the greatest common divisor of the numbers A and B. And A xor B is the value of the bitwise xor operation on the binary representation of A and B.input
The first line of the input contains an integer T (T ≤ 10000) denoting the >number of test cases. The following T lines contain an integer N (1 ≤ N ≤ 30000000). output For each test case, print the case number first in the format, ‘Case X:’ (here, X is the serial of the input) followed by a space and then the answer for that case. There is no new-line between cases. Sample Input 2 7 20000000 Sample Output Case 1: 4 Case 2: 34866117
题意:
多组数据输入,每组数据输入一个n,问在小于n的数字里面能找到多少对数满足gcd(a,b)==a^b(大于b)
解题思路:
根据异或的性质我们可以发现,a^gcd(a,b)=b;
而gcd(a,b)又是a的约数,所以我们可以枚举c,就可以像筛素数那样做,然后在暴力小数据打表的时候发现gcd(a,b)=a-b,证明详见紫书318页。所以我们在筛的时候就找a^(a-b)是否等于b就行代码
#includeusing namespace std;int gcd (int a,int b){ if(b==0)return a; else return gcd(b,a%b);}int a[300000005];void init(){ a[1]=0; a[2]=0; for(int i=1;i<300000007;i++) { for(int j=i+i;j<30000007;j+=i) { int tmp = j-i; if((j^tmp) == i) { a[j]++; } } a[i]+=a[i-1]; }}int main(){ init(); int t; cin>>t; int flg=1; while(t--) { int n; cin>>n; int ans=a[n]; cout<<"Case "< <<": "< <
总结:
要多去想规律,比如说看到异或就要想到:如果a^b=c那么a^c=b,然后还要结合打表。